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FOREWORD

(Unclassified) The work reported herein was done at the request
of the Aeronautical Systems Division (ASD) (ASZD), Air Force Sys-
tems Command (AFSC), for North American Aviation, Inc. under
Program Element 6340683F, System 139A,

(Unclassified) The results of the test presented were obtained by
ARO, Inc. (a subsidiary of Sverdrup & Parcel and Associates, Inc.),
contract operator of the Arnold Engineering Development Center (AEDC),
AFSC, Arnold Air Force Station, Tennessee, under Contract AF40(600)-
1200. The test was conducted from May 2 through 10, 1967 and June 2
through 24, 1967 under ARO Project No. PT0744, and the manuscript
was submitted for publication on September 12, 1967,

(Unclassified) This report contains classified information extracted
from North American Aviation's reports NA-66-1354 dated 3-2-67,
Secret, Group 3, and report TFD-67-402 dated April 1967, Secret,
Group 3.

(Unclassified) This technical report has been reviewed and is
approved. _ o '
£

Richard W. Bradley Leonard T. Glaser

Lt Col, USAF Colonel, USAF
AF Representative, PWT -* Director of Test

Directorate of Test
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YROREP ABSTRACT

@eeP®) Test results are presented for a study on a 0.10-scale
model, of the North American Aviation proposed advanced manned
strategic aircraft air vehicle. Inlets of various geometries were
tested at Mach numbers from 0.60 to 2. 20 over an angle-of-attack
range from 0. 2 to 13 deg and angles of yaw from -5.0 to +5. 0 deg.
Inlet performance in terms of compressor-face total-pressure re-
covery and flow distortion is presented as a function of mass-flow
ratio for various inlet geometries at several Mach numbers and
model attitudes.

Bayseniek fop poflit pelcaser Gisiribution snlic:hied.
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MODEL NOMENCLARUGEL ASSIFIED / UNCLASSIFIED

Symbol Description

B1 Basic AMSA fuselage extending to 6 in. aft of the cowl
leading edge (Unclassified)

FG1 Fuselage-inlet boundary-layer gutter height of 0.53 in.
(Saaxet)

FG2 Fuselage-inlet boundary-layer gutter height of 1. 03 in.
(Ymesat)

I1 Inlet duct: variable geometry supersonic diffuser used

with subsonic diffuser.A (see Fig. 9) (Unclassified)

12 Inlet duct: variable geometry supersonic diffuser used
with subsonic diffuser D (see Fig. 9) (Unclassified)

13 Inlet duct: variable geometry supersonic diffuser used
with subsonic diffuser F (see Fig. 9) (Unclassified)

14 Inlet duct: variable geometry supersonic diffuser used
with subsonic diffuser G (see Fig. 9) (Unclassified)

J Porous configuration for boundary-layer control bleed
regions (see Fig. 3) (Unclassified)

LO Inlet duct cowl: fixed cowl (Unclassified)

L1 Inlet duct cowl: variable deflection cowl (Unclassified)

M1 Metering section for main duct: includes metering ap-

proach section, nozzle and variable plug. Small nozzle:
Dy = 4.250 in, and D = 4. 200 in. (Seemai)

M2 Metering section for main duct: includes metering ap-
proach section, nozzle, and variable plug. Large nozzle:
D1 and Dg = 5. 25 in. (Seeuet)

Uo Bypass: no bypass (Unclassified)
Ul Bypass: bypass extending from MS 119 to MS 122 with
controlled exit door (Swagat)
U2 Bypass: bypass extending from MS 119 to MS 122; upper
half of perimeter is 51 percent porous (Serewmm)
U3 Bypass: bypass extending from MS 119 to MS 122; entire
perimeter is 51 percent porous (Sewwet)
vO Vortex generator configuration: no vortex generators
(Unclassified)" -
FIED
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Vortex generator configuration: vortex generators in-
stalled in forward location (Unclassified)

Vortex generator configuration: vortex generators in-
stalled in aft location {(Unclassified)

Vortex generator configuration: vortex generators in-
stalled in middle location (Unclassified)

Wing: stub wing clipped outboard from the estimated
region of wing influence (Unclassified)

Wing-inlet boundary-layer gutter height of 0. 25 in.
(Seaunet)

DECLASSIFIED/ UNCLASSIFIED

xi
RN

The reverse sidaf':fwiml.;pu'go is blank.




Ws

) AEDC-TR-67-213
DECLASSIFIED/ UNCLA_S';Sl_FIED o
SECTION | T —

INTRODUCTION

(Unclassified) A test was conducted for North American Aviation,
Inc. (NAA) on a 0. 10-scale inlet model of the NAA study for a proposed
advanced manned strategic aircraft (AMSA) air vehicle. The test was
conducted in the Propulsion Wind Tunnels, Supersonic (16S) and
Transonic (16T) of the Propulsion Wind Tunnel Facility (PWT).

(s=er=t) The purpose of the test was to provide data which will
define the performance and operating characteristics of a mixed-
compression fuselage-mounted inlet proposed by NAA for the AMSA
vehicle,

(Unclassified) Test data presented in this report are the signifi-
cant inlet performance characteristics of the model configurations
tested. All data from this test have been provided North American
Aviation, Inc.

SECTION I
APPARATUS

2.1 TEST FACILITY

(Unclassified) Tunnels 16T and 16S are closed-circuit, continuous
flow tunnels which are capable of operating in the Mach number range
from 0.5 through 1.6 and 1. 7 through 3.1, respectively. A more com-
plete description of their operating characteristics is presented in
Ref. 1. The axial location of the 0. 10-scale AMSA inlet model*and
model support system in the tunnel test sections are shown in Figs. la
and b (Appendix I) for 16S and 16T, respectively.

2.2 TEST ARTICLE

(Sewme#) The inlet model is a 0. 10-scale replica of forward
portions of the external fuselage and internal duct lines of an NAA pro-
posed AMSA air vehicle. Externally, the fuselage lines are duplicated
to a point 6 in. (model scale) aft of the cowl lip, and wing lines are
duplicated with a stub left-hand wing in the region of wing-inlet influence.
The internal lines are duplicated from the inlet to the engine face station
for the one half of the air induction system (left-hand duct). The test
model installed in Tunnels 165 and 16T test sections is shown in Fig. 2.

1
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(Seswmet) ng%Lcﬁiel is capable of remote actuation in pitch and yaw.
The model throat height, cowl position, bypass plug valve position,
bypass door position, and inboard and outboard plug valve position are
remotely variable, The inlet consists of one fixed external ramp (first)
and three movable ramps (Fig. 3) with the required linkage for actua-
tion. The first ramp is fixed at an angle of 5 deg with respect to the
centerline of the air vehicle.

AEDC-TR-67-213

(3ewweb) The air entering the inlet passes through the variable
geometry supersonic diffuser and the subsonic diffuser to the two -.
engine-simulators. Each inlet supplies the required airflow for two
engines. Duct pressure recovery is measured at each engine-face
station, and the airflow through each is measured with a standard ASME
nozzle and regulated with a flow control plug. The boundary-layer con-
trol (BLC) system consists of variable porosity walls in the supersonic
diffuser and bleed gutters forward of the inlet, Porous and solid plates
on the internal surfaces of the ramps, cowl, and upper and lower side
plates are used for boundary-layer bleed. The locations of the re-
movable plates are shown in Fig. 3a. The porosity of each bleed pat-
tern tested is also shown in Fig, 3a. The fuselage and wing boundary-
layer gutters (Fig. 3b) captured the boundary-layer approaching the
inlet, and the height could be adjusted manually. Three bypass configu-
rations were tested: one had a controlled exit door and two had porous
diffusers with an exit flow control plug. A sketch of the bypass configu-
rations is shown in Fig. 4. More details of the test model are contained
in Ref. 2. Model configurations tested are listed in Table I (Appendix II).

2.3 INSTRUMENTATION

(92er™®) The fuselage boundary-layer total-pressure profiles were
determined from total-pressure measurements obtained from two rakes
located 1.667 in. forward of the splitter leading edge (Figs. 5 and 6),
The wing boundary-layer total-pressure profiles were also determined
from total-pressure measurements obtained from two rakes located
1.63 in. forward of the upper splitter leading edge.

(Unclassified) Six 5-tube engine compressor-face rakes (Fig.:7)
measured the total pressure for each engine from which the compressor-
face total-pressure recovery and distortion were determined. These
total-pressure orifice locations were on equal areas.

(Unclassified) The airflow of each engine simulator was metered
using ASME nozzles M1 and M2 with four static taps at the nozzle
throat and four static taps upstream of the nozzle (Fig. 8).

2
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(Unclassified) Steady-state pressure instrumentation also included
static-pressure taps through the duct and various total-pressure probes
within the duct (Fig. 9). In addition, there were 12 transducers

mounted on the model to measure transient pressures which were re-
corded on oscillographs and magnetic tape.

SECTION III

PROCEDURE .

(Seargt) The tunnel flexible-nozzle contour and pressure ratio
were set to produce the desired free-stream Mach numbers. Figure 10
shows the Reynolds number and free-stream total pressures as a
function of Mach number. The model angle-of-attack settings ranged
from 0. 2 to +13 deg and angles of yaw +5 deg.

(Seemat) After the tunnel free-stream total pressure and ‘Mach’
number were established, the model was positioned to the desired
angle of attack and/or angle of yaw. At each test condition, inlet pres-
sure data were obtained for a range of simulated engine mass flows for
several throat heights. The engine(s) airflow control plugs were varied
to cover a range of airflows from either engine locked rotor or the inlet
buzz limit mass flow to the mass-flow ratio approaching supercritical
inlet operation. Buzz was determined by monitoring the output of a
pressure transducer mounted on the hub of the engine.

SECTION IV PRENRIS
RESULTS AND DISCUSSION

(Seewst) Test results are presented for a 0.10-scale inlet model

of the North American Aviation AMSA air vehicle for free-stream

Mach numbers from 0.6 to 2. 20. The fuselage and wing boundary-layer
profiles are shown for various model attitudes at M, = 2. 20. Inlet per-
formance in terms of compressor-face total-pressure recovery and flow
distortion is presented as a function of engine mass-flow ratio for various
model configurations and model attitudes. The engine airflow require-
ments used are for maximum-power, standard-day operation above the
tropopause and were obtained from Ref. 3. A list of the configyrations

tested is shown in Table 1.

(Unclassified) Because the inlet was in such close proximity to the
structure housing the yaw mechanism, as shown in Fig. 2b, an

a,
-0,

3
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investigation was conducted in 16T subsequent to the inlet test to deter-
mine the magnitude of this influence on flow angularity and local Mach
number at the model inlet station. The results of this investigation are
presented in Appendix III. Corrections based on these results have not
been applied in this report.

o~

4.1 BOUNDARY-LAYER THICKNESS IN THE INLET FLOW FIELD

(9@P™st) The fuselage and wing boundary-layer thicknesses in the
inlet flow field were determined to adjust the boundary-layer gutter-
height dimensions for the model. Thus, the gutter-height dimensions
position the inlet relative to the fuselage and wing. The initial gutter
heights for the fuselage and wing were set at 0.53 and 0. 25 in,, respec-
tively. The total-pressure rakes used to measure the boundary-layer
thickness are shown in Figs. 5 and 6.

(Sewwa}) The measured fuselage and wing boundary-layer profiles
are shown in Fig. 11 for three angles of yaw at angles of attack from
0.2 to 11.0 deg. The theoretical turbulent boundary-layer thickness
for a flat plate is also shown as a dashed line.

(Seeuat) The measured fuselage boundary-layer thickness agrees
very well with the theoretical at all combinations of positive yaw
angles and angles of attack. However, at negative yaw angles the
boundary layer thickens considerably on the fuselage and tends to
separate from the fuselage at an angle of attack of 11.0 deg.

(Sacxei) The measured boundary-layer thickness on the wing
surface shows close agreement with the theoretical at all yaw angles
and all angles of attack except 0. 2 deg where the measured value is
thicker than the calculated.

(Seemed) After the initial run the boundary-layer rakes were re-
moved and the fuselage gutter height was adjusted to 1.03 in. The
wing gutter height was not changed from the initial height of 0. 25 in.

4.2 INITIAL BOUNDARY-LAYER CONTROL DEVELOPMENT

(3®=me) Three porous-wall configurations (J1, J3, and J4)
and one solid-wall configuration (J2) were initially tested to select a
porous-wall configuration. The throat height was set at 102, 104, 106,
110, and 116 percent of the unstart throat height (percent T-L)., For

DECLASSIFIED/ UNCLASSIFIED
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each of the throat height settings, the primary duct flow plugs were
throttled to set the maximum engine-face total-pressure recovery
which occurs just prior to an inlet unstart. The variation of the.aver-
age engine-face peak total-pressure recovery as a function of the throat
height is shown in Fig. 12 for the inlet with solid-plate surfaces and
with selected porous-plate surfaces, bleed patterns J2 and J4, respec-
tively. At the test conditions shown (M, = 2.20, a = 4.0 deg, and °

¢ = 0 deg), the maximum pressure recovery is essentially constant for
throat heights from 104 percent T-L to 110 percent T-L for the porous-
plate configurations, whereas the total-pressure recovery for the solid-
plate configuration is a maximum at 102 percent T-L and decreases*with
increasing throat height.

AEDC-TR-§7-213
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(Seered The variation of average engine-face total-pressure re-
covery and distortion as functions of total engine-mass-flow ratio is
shown in Fig. 13. The data shown are for throat height settings cor-
responding to the 102 percent T-L and 110 percent T-L as noted above.
For the solid-plate configuration 2 (no boundary-layer bleed flow), the
maximum total-pressure recovery attainable was 0. 713. Opening the
flow plug (increasing corrected airflow) had the effect of moving*the*
duct shock downstream in the diffuser while maintaining an essentially
constant mass-flow ratio. As seen in Fig. 13, the total mass-flow ratio
obtained with the solid-plate configuration agrees well with the theo-
retical predicted value of 1. 055 from Ref. 3.

(Swe»m® With the porous-plate configuration 6, a variation of ap-
proximately 5.0 percent in mass-flow ratio was obtained as the duct
shock moved downstream in the diffuser. When the shock reached the
solid surfaces (past the influence of the porous plates), the pressure
recovery decreased rapidly, and further variation in the primary plug
position had no significant effect on mass-flow ratio. The maximum
average engine face total-pressure recovery was 0.912 at a mass-flow
ratio of 0. 906 and decreased as the duct shock moved downstream
through the region of the porous plates. At peak total-pressure re-
covery the maximum bleed-mass-flow ratio was approximately 0. 15.

@eemid The minimum value of engine-face total-pressure dis-
tortion for the solid-plate configuration was 0. 22, which occurred at
the outboard engine-face location, whereas the distortion for the‘pdtous-
plate configuration at a mass-flow ratio of 0. 915 was 0. 052 and 0. 040 at
the inboard and outboard engine-face locations, respectively.
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4.3 SUBSONIC DIFFUSER SELECTION

(Geesad) Four subsonic diffuser configurations were tested with
the J4 boundary-layer bleed pattern selected above in order to deter-
mine the diffuser with the best pressure recovery and distortion char-
acteristics. These subsonic diffusers had different diffusion rates
and different local angles. The inboard and outboard wall lines and
area distribution are shown in Figs. 9 and 14 versus model station,
respectively.

(@wemed) The variation of average engine-face total-pressure
recovery as a function of the throat height is shown in Fig. 15 for the
inlet with subsonic diffusers A and D. Only performance on configu-
rations A and D are shown since they exhibited the best performance
characteristics of the four tested. For throat heights of 104 percent
T-L to 110 T-L, subsonic diffuser D showed at least 0. 25 percent
improvement in total-pressure recovery over diffuser A for the range
of throat height tested.

@wewmed) The variation of engine-face total-pressure recovery
and engine-face distortion (inboard and outboard) as functions of total
engine mass-flow ratio are shown in Fig. 16 for the throat height
(110 percent T-L) that provided the highest peak recovery. Dif-
fuser D at peak recovery showed approximately a 0. 5-percent increase
in total-pressure recovery over diffuser A, and the difference in-
creased at the higher mass-flow ratios. Diffuser D showed a-lower
distortion than A at the higher mass-flow ratios for both inboard and
outboard engines.

(acLais Subsonic diffuser D was selected as the primary subsonic
diffuser for further studies; it showed the best average engine-face
total-pressure recovery and in general showed less difference in dis-
tortion between the inboard and outboard stations than the other con-
figurations.

4.4 PERFORMANCE IMPROVEMENT -

@®®eei) Diffuser D was selected (Section 4. 3) for continued test-
ing to improve the inlet performance characteristics. Various
porosity patterns for boundary-layer control (Fig. 3a) and vortex gener-
ators added to the interior surfaces of the duct at various locations on
the ramp and cowl (Fig. 17) were tested. A list of the various items of
model geometry comprising each configuration is included in Table I.
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(Seeued) The effect of vortex generator location in the duct on inlet
performance is shown in Fig. 18. Maximum average engine-face total-
pressure recovery is approximately equal for the three locations
tested. The greatest margin in mass-flow ratio (from the condition of
maximum recovery to the engine requirement) occurs for the riiddle
and forward positions, with the forward position exhibiting slightly less
engine-face distortion.

AEDC.TR.§7-213

¢dewrer) Variation of the average engine-face total-pressure re-
covery as a function of throat height is shown in Fig. 19 for configu-
rations 7, 14, and 19, for M, = 2.20, o = 4.0 deg, and ¢ = 0 deg. The
maximum total-pressure recovery for these configurations occurred
for a band of throat heights from 102 to 110 percent of the unstart throat
height. Comparison of the results for configurations 7 and 14 shows
that porous bleed improved recovery. Little or no additional recovery
was obtained through the addition of forward vortex generators (configu-
ration 19). ®

4ibewwn) The variations of average engine-face total-pressure
recovery and of engine-face total-pressure distortion as a function of the
total engine mass-flow ratio for configurations 7, 14, and 19 are shown
in Fig. 20. The improvement in the maximum pressure recovery
(approximately 0. 8 percent) of configuration 14 over that of configlra-
tion 7 is apparently due to the effect of the change in the boundary-layer
control bleed pattern (percent porosity) between J8 and J4. A compari-
son of the bleed arrangement and percent porosity of the two configura-
tions can be seen in Fig. 3.

€8T The vortex generators installed in the forward position
(configuration 19) caused a one-percent decrease in engine-face
average total-pressure recovery along the engine operating line com-
pared to configuration 14 with no vortex generators. As a result of the
addition of the vortex generators, the engines experienced an apparent
one-percent decrease in distortion at the inboard engine and a two-
percent decrease at the outboard engine,

RO Ve

4.5 EFFECT OF MACH NUMBER ON INLET PERFORMANCE

(@eTr®" Configurations 22 and 27, with subsonic diffuser D, bleed
pattern J8, and vortex generator V5, were selected for a Mach-
number performance evaluation. Inlet performance characteristics are
presented in the form of compressor-face total-pressure recovery and
total-pressure distortion for each simulated engine compressor - face as
a function of single engine mass-flow ratio. The performance data at

e SECLASSIFIED / UNCLASSIFIED
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transonic Mach numbers are presented for a throat height of*3:11 in. ;

at the higher Mach numbers (2. 00 and 2. 20), the data are presented
for a throat height of 110 percent T-L,

AEDC-TR-67-213

(@eetwet) The effect of Mach number on the air-induction system
performance measured at each of the simulated engine compressor
faces is presented in Fig, 21, The total-pressure distortion for the
inboard engine is generally higher than that for the outboard engine,
particularly at the higher mass-flow ratios. Also, the inboatd engine
generally had a lower total-pressure recovery than the outboard
engine in the transonic Mach range. This was expected because less
flow turning was required for the outboard engine than for the inboard
engine. The inboard engine-simulator metering duct apparently did not
have sufficient pressure ratio to obtain the desired airflows at M, = 0.8,
as shown in Fig. 21a.

(Seemet) It was observed that the mass-flow ratio at which inlet
instability (buzz) occurred increased with increasing Mach number,

-

oL hd Y -

4.6 EFFECT OF ANGLE OF ATTACK ON INLET PERFORMANCE

(Seemei) To define the effect of model angle of attack on inlet per-
formance, data were recorded at various angles of attack from 0. 2
to 13.0 deg.

(Unclassified) Because the angle-of-attack effect was not con-
sistent over the Mach number range tested, the inlet performance is
discussed according to operation at low, medium, and high Mach num-
bers. Inlet performance characteristics are presented in Fig. 22 to
show the effect of model angle of attack on engine-compressor-face
total-pressure recovery and total-pressure distortion as a function of
the total engine mass-flow ratio.

4.6.1 Mach Number = 0.60 and 0.95 (Low Range)

¢eerm) In Fig. 22a the effect of angle of attack on inlet perform-
ance is negligible from a = 0.2 to 4. 0 deg for the Mach number of 0.60,
at mass-flow ratios less than 0. 80, At a = 13 deg an additional two-
percent loss in recovery occurred at the high mass-flow ratioss-~As
the mass-flow ratio was increased above 0. 80, there was a rapid
decrease in total-pressure recovery and an increase in distortion.

(9TTT™™) The most notable evidence of the effect of angle of
attack on distortion was that the inboard engine exhibited consistently
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higher distortion than the outboard engine over the entire range of mass-
flow ratios.

AEDC-TR-$7-213

(e=megt) The effect of model angle of attack on inlet performance
at the Mach number of 0. 95 is shown in Fig. 22b. These data also
show that the distortion for the inboard engine was greater than that
for the outboard engine, but the difference does not appear to ’t‘)\g_.z_a_g
great, in the range of mass-flow ratios corresponding to the engine
requirement, as was found for the performance at a Mach number
of 0.60.

4.6.2 Mach Number = 1.50 (Medium Range)

(9wemet) Figure 22c shows a definite increase in engine-face
total-pressure recovery as the angle of attack was increased’g‘x;‘grar‘l.
0.2 to 13. 0 deg over a wide range of mass-flow ratios. At a mass-
flow ratio 0. 76, corresponding to the engine requirement {(Ref. 3), the
gain in total-pressure recovery, as angle of attack was increased from
0.2 to 13. 0 deg, was approximately 1. 0 percent.

(®eeras) The effect of angle of attack on the pressure distortion
at a mass-flow ratio about 0. 76 did not appear to be direct function
of angle of attack. The tendency for the inboard engine to consjigtgntly
exhibit higher values of distortion than the outboard engine (as noted
previously in the low Mach number range) was not evident, except at
conditions of o = 8. 0 deg.

4.6.3 Mach Number = 2.00 and 2.20 (High Range)

(9eer®™® Maximum engine-face total-pressure recoveries of 0.930
and 0. 925 were obtained at @ = 4,0 deg at Mach numbers 2. 00.and 2. 20
(Figs. 22d and e, respectively). At airflows corresponding to the
referenced engine requirements, the recoveries were about one and
two percent lower at the respective Mach numbers and the distortions
were essentially equal at 0. 045 for the inboard engine. v

(Swemet) Distortion was generally greater for the inboard engine
than for the outboard engine for o = 0. 2 and 4. 0 deg for both Mach
numbers at mass-flow ratios up to about 0. 85. At the high angles of
attack of 8.0 and 11. 0 deg, this relationship was reversed.

4.7 EFFECT OF YAW ANGLE ON INLET PERFORMANCE

(Seer®t) The configuration selected for the performance evalua-
tion [ diffuser I2 (D), boundary-layer bleed J8, and VG pattern V5]

i
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was tested at various yaw angles from -5.0 to 5.0 deg Inlet perform-
ance characteristics are presented in Fig. 23 to show the effect of

yaw angle on engine-compressor-face total-pressure recovery and
distortion as a function of total engine mass-flow ratio at 4, 0- deg
angle of attack.

(Y=ewet) The data at the low Mach numbers (0. 60 and 0. 95),
Figs, 23a and b, show that the effect of positive yaw on inlet perform-
ance was negligible., However, yawing the model -5.0 deg produced a
total-pressure recovery loss up to two percent, and the engine-face
pressure distortion increased a corresponding amount at Mach num-
ber 0.60. Little effect of yaw on total-pressure distortion was indi-
cated at Mach number 0. 95, s

(Jeemei) The data for the medium Mach number (1. 50), Fig. 23c,
show that the engine-face total-pressure recovery increased slightly
as yaw angle was increased from zero to 5. 0 deg. A decrease
in engine-face total-pressure recovery up to three percent is shown
for the negative yaw angles. The minimum engine-face total-pressure
distortion occurred at 2. 5-deg yaw and the maximum occurred at
-5.0 deg.

(S==mes) Inlet performance was directly affected by yaw angle at
the high Mach numbers (2. 00 and 2. 20) as shown in Figs. 23d and e.
Generally, an increase in average inlet total-pressure recovery and
mass -flow ratio was shown as yaw angle was increased from -5.0 to
5.0 deg. Engine-face total-pressure distortion showed little effect
from yaw angle from zero to 5.0 deg; however, at negative yaw angles
the distortion doubled. .

(See®® At a Mach number of 2. 00 the use of a bypass system
would be required at all yaw angles except zero and -2, 5 deg to match
the engine reference airflows.

(Seemet) At a Mach number of 2. 20 (Fig. 23e) engine-face total-
pressure recovery showed a direct increase with increasing angle
of yaw from -2.5 to 5.0 deg. The maximum recovery and minimum
distortion were obtained at 5. 0-deg yaw. Yawing the model 5.0 deg in-
creased engine-face pressure recovery four percent at the engine refer-
ence airflow. The effect of yaw angle on total-pressure distortion was
small except for -5.0 deg, where the fuselage tended to block the flow
to the inlet and thus resulted in an increase in distortion and reduced
recovery. This blockage of flow from the inlet at -5. 0 deg yaw was
seen in the boundary-layer data discussed in Section 4.1 (Fig: 11).-
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(Seewet) For all Mach numbers, distortion was greater for the
inboard engine than for the outboard engine at negative yaw angles or
for the high supercritical conditions. Also for all Mach numbers, the
doss in total-pressure recovery and increase in total-pressure dis-
tdrtmn for negative yaw angles was greater than the gain at positive
yaw angles.

AEDC-TR.67-213
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4.8 EFFECT OF THROAT HEIGHT ON INLET PERFORMANCE

(Isewmet) The peak engine-face total-pressure recovery as a func-
tion of throat height in percent T-L for the selected configuration 19
is presented in Fig. 24. These data show that the total-pressure
recovery between 104 percent T-L and 110 percent T-L was less sensi-
tive to throat height. Above or below these values the total-pressure
recovery made a significant drop. Figure 25 presents performance
data for two throat heights at M, = 2. 20 and two throat heights at
Mg = 1.75. At M = 2. 20 for the engine match-line, the total-pressure
recovery was higher and the total-pressure distortion was lower for
the 110 percent T-L: compared to the 104 percent T-L throat height.
The lower limit for started inlet operation at each throat height oc-
curred at the minimum mass-flow ratio for each of the performince
curves shown. As throat height was increased the minimum mass-flow
ratio required to maintain a started inlet increased. At M, = 1. 75
(Fig. 25b) the average total-pressure recovery was relatively insensi-
tive to the throat-height settings investigated. However, below a mass-
flow ratio of 0. 825 the small throat height gave the lowest distortion for
both inboard and outboard engines. Therefore, distortion would be the
factor in determining the throat height at My = 1. 75. For the Mach num-
bers below 1. 75 a throat height of 3. 11 in. was maintained. At this
throat height the first and second ramps were aligned. amz <o

4.9 EFFECT OF BYPASS ON PERFORMANCE - o
(S»eP®t) The NAA AMSA vehicle will use the variable bypass

system to minimize spillage drag around the cowl lip, to optimize.

inlet engine airflow matching, and to position the internal terminal

shock for optimum inlet performance. Sketches of the three bypass

configurations tested are shown in Fig. 4. Bypass configuration Ul had

a controlled exit door on the top diffuser wall and configurations U2

and U3 had porous diffuser walls. R

(Swemet) Performance data for three bypass configurations are
presented in Fig. 26 to show the effect of increasing bypass flow.

.
4 -
.
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The inlet per@ormance is- also shown with no bypass for comparison
purposes and to indicate the amount of bypass leakage with the bypass
door or plug in the closed position. Opening the bypass door (Fig. 26a)
had very little effect at door angles up to 15 deg. However, as the door
angle was increased beyond 15 deg the effectiveness of bypass flow in-
creased,

(Serre™ Figures 26b and c show the effect of opening the bypass
plug (increasing bypass flow) for the porous diffuser configurations.
The performances of both configurations were quite similar. How-
ever, bypass configuration U3 had slightly higher recovery ard-lewer
distortion than either of the other two bypass configurations. The
porous diffuser configurations provided more mass-flow-ratio control
than those with the bypass door. The control of mass flow was essen-
tially linear with plug position.

SECTION V
CONCLUSIONS

(3*™™wb) The test results of a 0. 10-scale AMSA inlet model
tested through the Mach number range of 0,60 to 2, 20 and at angles
of attack and yaw from 0. 2 to 13. 0 deg and -5.0 to 5. 0 deg, respec-
tively, indicate that:

(soewmet) 1. Approximately a 20-percent increase in average
total-pressure recovery and a larger decrease in distortion was
obtained with the addition of the best boundary-layer control
configuration.

(Saasat) 2. The total-pressure distortion for the inboard engine
was generally higher than that of the outboard engine, particularly
at the higher mass-flow ratios.

@Gwemed) 3. As throat height was increased, an increase in mass-
flow ratio was required to maintain a started inlet.

g ‘:‘ i
(Seamet) 4. Both total-pressure recovery and distortion were
affected by throat height changes at My, = 2. 20. However, at

M, = 1. 75, distortion was the primary factor affected by throat

height.

¢Swewed 5. Bypass configuration U3 had slightly higher recovery
and lower distortion than either of the other two configurations
tested.

N i
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(Yeeret} 6. Both porous-bypass configurations had more bypass
mass-flow-ratio control than did the bypass-door configurations.

(9emmei) 7. Buzz-free inlet operation for normal inlet geometries
was obtained throughout the test range.

(Seewei) 8. The addition of vortex generators reduced distortion
up to two percent, particularly for the outboard engine.
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APPENDIXES

. ILLUSTRATIONS

Il. TABLE -
Ill. THE INFLUENCE OF THE MODEL SUPPORT STRUCTURE

ON THE FLLOW ANGULARITY AND LOCAL MACH NUMBER
AT TRANSONIC MACH NUMBERS
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